Selective Killing of Tumors Deficient in Methylthioadenosine Phosphorylase: A Novel Strategy
نویسندگان
چکیده
BACKGROUND The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. PRINCIPAL FINDINGS We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. CONCLUSION We describe a selective strategy to kill tumor cells lacking MTAP.
منابع مشابه
Absence of Methylthioadenosine Phosphorylase in Human Gliomas1
All normal mammalian tissues contain methylthioadenosine phosphorylase, which plays a role in the recycling of purines and methionine consumed during polyamine synthesis. A complete deficiency of methyl thioadenosine phosphor) lase has been reported in some human leukemias and lymphomas and in a few solid tumors. The exact incidence of the enzyme deficiency among fresh human tumor specimens has...
متن کامل5-Methylthioribose. Its effects and function in mammalian cells.
The growth responses of 5-deoxy-5-methylthioribose on a 5'-deoxy-5'-methylthioadenosine phosphorylase containing cell line (BW5147) and the methylthioadenosine phosphorylase-deficient cell line (L1210D) were examined. Methylthioribose was shown to dramatically affect these cells, increasing their growth rate, saturation density, and viability. It was also found that methylthioribose could satis...
متن کاملBiochemical genetic analysis of the role of methylthioadenosine phosphorylase in a murine lymphoid cell line.
The enzyme methylthioadenosine phosphorylase functions in both purine and polyamine metabolism is dividing mammalian cells. To determine the effects of the loss of this enzyme on cell growth and metabolism, we selected two methylthioadenosine phosphorylase-deficient mutant clones of the transplantable murine T lymphoma cell line R1.1. The first had 3.5% of wild type methylthioadenosine phosphor...
متن کاملDeficiency of methylthioadenosine phosphorylase in human leukemic cells in vivo.
Cells from 20 patients with leukemia and 9 with solid tumors were assayed for the enzyme methylthioadenosine phosphorylase, which function in both purine and polyamine metabolism in rapidly dividing cells. As determined by autoradiography of viable cells, and by direct enzymatic analysis, samples from one individual with pre-T-cell acute lymphoblastic leukemia and one with common acute lymphobl...
متن کاملTherapeutic targeting of methylthioadenosine phosphorylase
Methylthioadenosine Phosphorylase is a well-known tumor suppressor and a regulator for purine and pyrimidine synthesis and metabolism. Several previous studies show MTAP could be a prognostic marker independent or coordinate with p16 in multiple cancer types. Furthermore, inhibitors of MTAP have been developed and tested in in vitro and in vivo experiment to support the selective tumor cell-kil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009